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Abstract

Contact theorems for rough surfaces are discussed. Simple relations
for the average contact density are obtained for neutral and charged walls.
When the walls are not planar there are new contributions proportional to
the field gradients near the charged wall.

1 Introduction

Contact theorems are very useful to estimate the accuracy of integral
equations and computer simulations for inhomogeneous systems near neutral
or charged walls.

We have derived in the past sum rules for liquids near charged planar
surfaces [1, 2] in which the total contact density was given as a function of
the charge on the wall and the bulk pressure of the fluid.

In recent times, and due to the rapid increase in computer performance,
simulations of more realistic systems are possible. Non spherical solute
molecules, and metal surfaces with crystal structures are accessible to sim-
ulations of interfaces with discrete (and also non spherical) solvent (water)
molecules. In these simulations it is very important to use a potential with
a correct equation of state (pressure). In general, in the models of water the
interaction is either adjusted to the experimental value of the density, and
there is an error in the pressure, or (in a few cases) the interaction is ad-
justed to the pressure, and there is a generally slight error in the density. For
the simulation of interfaces, we think that the latter situation is preferable.



The contact sum rules are based on force balance considerations, between
the bulk pressure and the forces exerted by the molecules on the container
walls. Although a formal derivation could be obtained by integration Af the
Born-Green-Yvon equation, it can be shown that all pair (or higher multi-
plet) interactions of molecules in the fluid phase cancel and therefore only
singlet densities count. Our results are extensions of previous work [3, 4, 5].

There are two kinds of dynamic relations that are interesting in electro-
chemistry: those for the normal pressure and those for the stress and strain
along the interface, that have been measured experimentally [6]. We discuss
in this paper the first ones for surfaces that are planar on the average, but
not necessarily locally. This includes rough surfaces, but more interestingly
interfaces between a single crystals and solutions.

The most general definition of a planar interface is obtained by requir-
ing that the average force acting on an individual molecule of the fluid, of
species i = 1 ... m is integrated to a constant for arbitrarily large surfaces.
The surface defined by zz (x, y; A) represents the contact surface, and is the
solution of the equation

wi(x,y,z) =A (1)

where w,(r) = wi(x, y, z) is the interaction of the wall with Wolecule i for
given x, y, and finite A. Then

1L dxdyzl(x,y; A) = BA (2)

and our condition simply is that eq.(2) is satisfied for every component of
the mixture. This is a planar surface on the average.

For hard core potentials we clearly choose z, (x, z) to be the hard core
surface, and the requirement is that the average zi over the entire, infinite
surface is a constant.

2 Neutral systems

Consider the total energy of the interface

W = , J df-- w (1)P3 (1) (3)
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where w.(1) =_ wi(Fi; {b}, nj) is the total interaction potential of the wall and
a particle of species i situated at position f'1 with orientation di • (fl are the
Euler angles that define the molecular orientation). {b} is a set of parameters
which define the position of the surface : if we produce an arbitrary but small
deformation of the surface, we get from eq.(3) the Taylor expansion

8w df A, P,(1) ( + 1< 62 W >s
8 2 AbSb'

We are interested in a particular deformation of the interface: a uniform
displacement in the z direction: Then

P -Po OW 1 f dz!dyxldy l [dz, EPj(l)Ow(1) (5)

which expresses the force balance equation in the z-direction.

Let us consider first the case of hard walls near a fluid with hard con-
vex molecules. The simplest case is that of a planar wall. The hard core
interaction is best expressed by the force relation

wi()= T[F,(rl,, -. 11 (6)

where the solution of Fi(rfj, l) = 1 yields the position of contact of the
molecule at the wall [81, when the orientation is given by the Euler angles

81, -1,). Then weobtain zi(D,1) as the solution of

Fj(z,, j) 1 (7)

For a hard ellipsoid, of main axes A, B, C for instance we get [8]

Z =(fil) = 1R A2 + R32/B 2 + Rj/C2 }

= V1/{cos2 OI/C2 + sin 2 01[sin 2 OI/A 2 + cos 2 Ok/B 2]} (8)

where R?.j are the matrix elements of Euler's rotation matrix.
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Replacing into eq.(5), we get

P = Po = kBTr J Pi[zl(ol),Ql]Cos61 (9)

where z1 (Qj) is given by eq.(8) When A = B = C we get from eq.(8)

z 1 = A = a/2 (10)

and we recover the well known relation

P = Po = kT p(u,/2) (11)
5

When the walls are not flat, then we have to discuss the normal com-
ponents of the pressure tensor, and the tangential components of the stress
tensor. Consider only crystal surfaces, which are more interesting experimen-
tally. The equation for the contact distance is more complicated, since we
have to solve a rather more complex equation involving convex and concave
regions

F,(x•,zy,; DI) - 1 = 0 (12)

which is solved to yield

zI(1) z(X1 ,y 1 ,n 1 ) (13)

To compute the force we need to know the equation for the normal to the
tangent plane more specifically

cos #'(Xiyi) = nl,.ge (14)

where n-, is the direction of the tangent plane of the molecule. As an example

consider the triangular lattice of lattice constant d and height h: The simplest
form of the surface is [7]

z(x,y)= (h/2)[cosa + cosb] (15)

where 2(r 27r
a = d - ylV3) and b = -T(2y/v'3)
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The components of the normal vector il. =- i(x, y) are easily computed from
az/ax and 9z/ay:

Cos 0. - V 1 + (rh/d)2 tsin2 a + (1/3)(sin a - 2 sin b) 2  (16)

The normal pressure sum rule is then

P0 = kBTZP;(con) (17)
i

where

Ai (con) = 37d dy] -C2p,[z (l)lcos6,(xJ,yI)cosO0 (18)

where now 0,, is the angle between the tangent plane at contact and the
direction of the line joining the contact point and the center (also center of
mass) of molecule i.

3 Charged Systems

The interaction wi(r) is now the sum of two contributions: a Coulomb
or electrostatic term plus a non electrostatic, covalent term such as discussed
above.

wi(r) = wf'(r) + w"(r) (19)

Consider different situations:

1. The uniformly charged electrode facing a primitive model (continuum
dielectric) electrolyte. In this case

wi(r) = wi•(r) + w•e(r) (20)

The electrostatic contribution is in this case

w T(z) = -eiEoz/2 (21)
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where e, is the charge of i, Eo is the bare electric field. Using the
electroneutrality relation

qs = q(z)dz = Eoe (22)

10 4,r

where qs is the surface charge density of the elctrode. We immediately
get

P = P0 - '[Eo]2 (23)

where Po is given by Eq.(17).

It expresses the fact that the total pressure must be equal to the ki-
netic term due to the collisions of the molecules at the wall minus the
attractive electrostatic contribution of a planar capacitor with charge
density qs = !Ea

2. The flat electrode facing a non primitive model electrolyte. If the sol-
vent consists of neutral molecules with a dipole ( or higher multipoles
), there will be no net force since the dipoles interact with the gradient
of the applied field VEo, which in this case is zero. Therefore, only the
hard repulsive interactions count, and we get now

P= Po(solute) + Po(solvent) - • Eo1 2 (24)

where Po(solute), Po(solvent) are the bulk pressure terms given by
Eq.(17). Notice that now the dielectric constant has disappeared from
this relation. This means that the electrostatic contribution in a sol-
vent of high dielectric constant like water, is now much smaller than
in the primitive model, and that the covalent (hard core) solvent term
Po plays a much larger role in the makeup of the concentration profile
near the electrode.

3. The rough or structured electrode near a primitive electrolyte. The
situation is now more complicated since the charge distribution at the
electrode surface will not be uniform, and therefore, both contact den-
sities (for hard surfaces as well as for soft surfaces) will be functions
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of z as well as the position on the surface x, y. There will be a simple
relation only for average quantities such as the average contact density
near a hard plane, Eq(18)

It is clear that the electrostatic forces along the surface are of vanishing
magnitude for a random rough surface, or zero for a periodic crystal
surface. We assume that the surface has a fixed charge distribution,
and since we are neglecting images, it is not metallic.

Asume now a capacitor in vacuum, in which one plate is our surface S,
with its charge distribution, and the second plate is very far, and has a
uniform charge density -qs, such that there is no field sufficiently far
behind the first plate of our capacitor. From Gauss's theorem, and since
the transversal components of the field E0(1), EO(1) are asymptotically
zero at the sides of our capacitor

< E0 >s= (1/S) J dxldyE°(1) = (47r/e)qs (25)

Since the far away electrode creates a field -(1/2) < E? >s, which does
not contribute to the pressure on the first electrode, the electrostatic
contribution to the pressure P, is given by

M

Pe = 1/S 1 dl • ep,(l) [E°(1) - (1/2) < E? >s]

i----Ii=1

Yn 
M

I/S A1jS fj piV (~1) [E0(1) < E.O. > s
1/S~dl~eipi()(1/2) < O>s1S+I e ~~ L

(26)

Using charge electroneutrality, we get

P" -s-7< o • +/S dl eiP,(1)[E.°(1)- < E.° >S] (27)
i=1

where the first term is the Maxwell stress tensor contribution present
in the flat electrode case, while the second term is a new one arising
from fluctuations in the bare field. The integration should cover only
a narrow region near the electrode surface.
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The other single particle term containig the short range interactions
between the molecules and ions and the wall, yields

< (1) >(1 l/Sjdxdy pi(1) 71 w'(1) (28)

where

1  >S= /S dx, dy, dzpi(1) (29)

Putting it all together yields the general contact theorem for a planar
on the average, but not necessarily smooth, surface

P = Po - E < E.? >2 +11S dl ep,(1)[E°(1)- < E° >s]

- < Ml (1) I >s (30)-i=11

This theorem is a generalization of the previously derived contact theo-
rems to the realistic case of non smooth electrode surfaces. It contains
the previous results as particular cases.

For a surface with an array of sticky adsorption sites, such as in the
case of the sticky site model, (SSM) model discussed elsewhere (9], the
adsorption potential has the form

-OA.(/lR)b(z) (31)

with
M

A,(R) = • A,'6(R - nfl, - n2d 2) (32)
nl ,n2

Here R = x, y is the position at the electrode surface, and z the distance
to the contact plane, which is at a distance o12 from the electrode. In
32, nj, n2 are integers, there are M sites on the electrode of area S , and
a,, d2 are the lattice vectors of the adsorption sites on the surface. The
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parameter A. represents the fugacity of an adsorbed atom of species a.
Define now the regular part of the density function

y,(1) = (pi(1)/p,)ew'1 (1) (33)

Replacing into the general contact theorem 30 gives [5]

P = kBT E ý(o/2)- e/8wr[E°(0)]2 + M< > py,(1) (3

This theorem has been verified recently by [4], for the exactly solved
model of a one component plasma in two dimensions.

4. The rough electrode near a non primitive (for example with a solvent
of dipolax hard spheres) electrolyte. Now we have to include the effect
of electric field gradients, which are not zero neax the electrode. The
total electrostatic force is [10]

8,?o( e :Eo + u-,.(. o) + (1/6)qE (' o) (35)

where A, is the dipole moment of a, q, its quadrupole moment, and
so on. We remark that now the solvent singlet particle density p,(1) is
not only a function of r-1, but also of the orientation of the molecules
with respect to the electrode, which in the case of the linear dipoles is
given by 01, 01. Therefore we expand

p.(1) = Ep,.nY.'(01, 0) =po+Ep!,.m•y. + (36)

The dipole contribution to the pressure is

( 0aw'.(1)

00z
47rL °dzi(1/1S)Jdx1dyp.(1) zo(l) (37)

which after a short calculation leads to
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Po(solute) + Po(solvent) - < E°(O) >2

+1/S / dl•p,,,(1)[EO(1)- < EO(0) >I -] < - P•,•4 •, 3 0E9Z(,

(38)
where we have used

E0  = E,(r,)e (39)

where EL are the polar components of the unit vector.
The last term of Eq.(38) corresponds to an electrostriction effect which
vanishes for uniform external field Eo.

5. The rough electrode near a non primitive electrolyte: Most of the mod-
els of water employed in the computer simulations consist of neutral
molecules with embedded point charges.
The sum over the charges q%, in each molecule is indicated by the index
v, and is zero for each molecule. Each of these charges is located at
the position b, relative to a molecular reference frame. From Eq.(30)
we get

1

P = Po(solute) + Po(solvent) - 1- < E°(O) >2

+1/S I dl Ze'p,(1)[E°(1)- < E.(O) >1+ < p,(1) qE°(F1 +b,) >s

(40)
where 1 i(1) is now the orientation dependent density function of the
solvent with embedded charges at contact.

These relation point to the importance of using a model potential for liquid
water that has the correct equation of state (pressure) rather than the correct
bulk density ( which may be off may be by a few percent) when computing
density profiles near planar or rough electrodes.
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